Bad Sleep = 144% Higher Risk of Heart Disease

Sleep is the ultimate performance-enhancing drug.

It’s legal, free, and has no side effects.

We could be here all day if I were to list all the benefits of sleep, but there’s no need for that.

Let’s focus on one: heart health.

The University of South Florida recently released a paper that studied 6,820 American adults and their specific sleep patterns.

It turns out that individual aspects of poor sleep such as sleep deprivation, low-quality sleep, sleep inconsistency, etc. was significantly detrimental to heart health.

However, participants who showed multiple signs of poor sleep had an even greater risk. They were 141% more likely to develop heart disease.

All this to say, if you care about one of your most vital organs, you need to get your rest.

They say 7-9 hours is an ideal range for adults, but this concept is widely misunderstood.

It doesn’t mean that you can pick any number between 7-9. The amount of sleep you need is largely determined by your genetics.

Sleep experts say the best way to find your ideal sleep duration is through trial and error.

Basically, test out 7 hours one night and see how you do. If you feel like a zombie all day, you might want to bump it up a bit.

Keep adding 15-minute increments each night until you reach a sleep duration that you’re comfortable with.

And if you can help it, stick to a consistent schedule. Meaning, go to bed and wake up at the same time every day.

If you have trouble falling asleep, there’s a technique developed by the US military you can use.
It was designed so their jet pilots can get their much-needed rest, even in the most unideal situations:

First, consciously, and slowly relax all your face muscles (tongue, jaw, eyelids, etc.).

Then, relax your shoulders and arms (one side at a time).

Do the same with your chest as you exhale, and then move on to your legs.

Finally, clear your mind and imagine one of the following:

(1) Laying in a canoe below a clear blue sky, or (2) laying in a black velvet hammock in a pitch-black room.

Sounds a bit weird and oddly specific, I know.

But once you get used to the technique, it can really help.

To help fall asleep even faster, we recommend our breakthrough sleep support supplement, Overnight T+.

This formula is designed to help you wind down at night…

Fall asleep faster…stay asleep longer…and wake up feeling refreshed.

Overnight T+ combines powerful sleep support ingredients like theanine….

A compound found in tea that works by helping the brain generate “alpha waves” – the peaceful calm state you experience right before you fall asleep.

Magnolia…

This plant has been used in Eastern Medicine for thousands of years to help promote high quality sleep and to fight stress and anxiety.

Research shows it helps men spend 30% more time in “Slow Wave” sleep.

Passion Flower…. a potent GABA promoter with studies show it can help you sleep 25% longer.

The “Root Of kings”, an ancient herb shown to make men spend 2X more time in slow wave sleep…the deep sleep when your mind and body repairs itself.

And 8 more powerful ingredients.

For all the details on this remarkable supplement designed specifically for men.

Click the link below.

Try Overnight T+ Now – Risk Free!

PS: Overnight T+ is a dual support formula that also acts as a potent testosterone booster.

One recent study published in Biological Rhythm Research revealed that missing just 30 minutes of sleep a night can reduce testosterone levels by up to 68%!

Another study published in The Journal of the American Medical Association found testosterone production can drop up to 50% after just one week of poor sleep.

Which is why one study found men who take the “Root of Kings” have 500% higher testosterone levels than men who don’t!

Try Overnight T+ Now – Risk Free!

5 1 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x

Mito Male Scientific References

1. Cavallini, G., Caracciolo, S., Vitali, G., Modenini, F., & Biagiotti, G. (2004). Carnitine versus androgen administration in the treatment of sexual dysfunction, depressed mood, and fatigue associated with male aging. Urology, 63(4), 641-646. doi:10.1016/j.urology.2003.11.009

2. Malaguarnera, M., Cammalleri, L., Gargante, M. P., Vacante, M., Colonna, V., & Motta, M. (2007). L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. The American Journal of Clinical Nutrition, 86(6), 1738-1744. doi:10.1093/ajcn/86.5.1738

3. Karlic, H., & Lohninger, A. (2004). Supplementation of l-carnitine in athletes: Does it make sense? Nutrition, 20(7-8), 709-715. doi:10.1016/j.nut.2004.04.003


4. Samimi, M., Jamilian, M., Ebrahimi, F. A., Rahimi, M., Tajbakhsh, B., & Asemi, Z. (2016). Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clinical Endocrinology,84(6), 851-857. doi:10.1111/cen.13003


5. Sahlin, K. (2011). Boosting fat burning with carnitine: An old friend comes out from the shadow. The Journal of Physiology, 589(7), 1509-1510. doi:10.1113/jphysiol.2011.205815


6. Soczynska, J. K., Kennedy, S. H., Chow, C. S., Woldeyohannes, H. O., Konarski, J. Z., & Mcintyre, R. S. (2008). Acetyl-L-carnitine and α-lipoic acid: Possible neurotherapeutic agents for mood disorders? Expert Opinion on Investigational Drugs, 17(6), 827-843. doi:10.1517/13543784.17.6.827


7. Miyagawa, T., Kawamura, H., Obuchi, M., Ikesaki, A., Ozaki, A., Tokunaga, K., . . . Honda, M. (2013). Effects of Oral L-Carnitine Administration in Narcolepsy Patients: A Randomized, Double-Blind, Cross-Over and Placebo-Controlled Trial. PLoS ONE,8(1). doi:10.1371/journal.pone.0053707


8. Cristofano, A., Sapere, N., Marca, G. L., Angiolillo, A., Vitale, M., Corbi, G., . . . Costanzo, A. D. (2016). Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimers Dementia. Plos One, 11(5). doi:10.1371/journal.pone.0155694

. Fillit, H., & Hill, J. (2004). The Economic Benefits of Acetylcholinesterase Inhibitors for Patients with Alzheimer Disease and Associated Dementias. Alzheimer Disease & Associated Disorders,18. doi:10.1097/01.wad.0000127492.65032.d3


10. Miyata, M., Yoshihisa, A., Yamauchi, H., Owada, T., Sato, T., Suzuki, S., . . . Takeishi, Y. (2014). Impact of sleep-disordered breathing on myocardial damage and metabolism in patients with chronic heart failure. Heart and Vessels, 30(3), 318-324. doi:10.1007/s00380-014-0479-6


11. Lango, R. (2001). Influence of ?-carnitine and its derivatives on myocardial metabolism and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovascular Research, 51(1), 21-29. doi:10.1016/s0008-6363(01)00313-3


12. Vescovo, G., Ravara, B., Gobbo, V., Sandri, M., Angelini, A., Barbera, M. D., . . . Libera, L. D. (2002). L-Carnitine: A potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. American Journal of Physiology-Cell Physiology, 283(3). doi:10.1152/ajpcell.00046.2002


13. Shadboorestan, A., Shokrzadeh, M., Ahangar, N., Abdollahi, M., Omidi, M., & Payam, S. S. (2013). The chemoprotective effects of l-carnitine against genotoxicity induced by diazinon in rat blood lymphocyte. Toxicology and Industrial Health,31(12), 1334-1340. doi:10.1177/0748233713491811


14. Chowanadisai, W., Bauerly, K. A., Tchaparian, E., Wong, A., Cortopassi, G. A., & Rucker, R. B. (2009). Pyrroloquinoline Quinone Stimulates Mitochondrial Biogenesis through cAMP Response Element-binding Protein Phosphorylation and Increased PGC-1α Expression. Journal of Biological Chemistry,285(1), 142-152. doi:10.1074/jbc.m109.030130


15. Chowanadisai, W., Bauerly, K. A., Tchaparian, E., Wong, A., Cortopassi, G. A., & Rucker, R. B. (2009). Pyrroloquinoline Quinone Stimulates Mitochondrial Biogenesis through cAMP Response Element-binding Protein Phosphorylation and Increased PGC-1α Expression. Journal of Biological Chemistry, 285(1), 142-152. doi:10.1074/jbc.m109.030130


16. Stites TE, Mitchell AE, Rucker RB. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr. 2000 Apr;130(4):719-27
17. Steinberg, F., Stites, T. E., Anderson, P., Storms, D., Chan, I., Eghbali, S., & Rucker, R. (2003). Pyrroloquinoline Quinone Improves Growth and Reproductive Performance in Mice Fed Chemically Defined Diets. Experimental Biology and Medicine, 228(2), 160-166. doi:10.1177/153537020322800205


18. Biswas, T. K., Pandit, S., Mondal, S., Biswas, S. K., Jana, U., Ghosh, T., . . . Auddy, B. (2010). Clinical evaluation of spermatogenic activity of processed Shilajit in oligospermia. Andrologia,42(1), 48-56. doi:10.1111/j.1439-0272.2009.00956.x


19. Surapaneni, D. K., Adapa, S. R., Preeti, K., Teja, G. R., Veeraragavan, M., & Krishnamurthy, S. (2012). Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic–pituitary–adrenal axis and mitochondrial bioenergetics in rats. Journal of Ethnopharmacology, 143(1), 91-99. doi:10.1016/j.jep.2012.06.002


20. Chang, C. S., Choi, J. B., Kim, H. J., & Park, S. B. (2011). Correlation Between Serum Testosterone Level and Concentrations of Copper and Zinc in Hair Tissue. Biological Trace Element Research,144(1-3), 264-271. doi:10.1007/s12011-011-9085-y


21. Plasma Steroid-Binding Proteins in Tumour Diseases. (1984). Molecular Aspects of Medicine, 371-380. doi:10.1016/b978-0-08-033239-0.50032-6

[]