BLACK FRIDAY SALE:  Save Up to 57% OFF! No Coupon Needed

Light Pollution is Ruining Your Sleep

If you’ve ever gone camping, it’s hard to forget the night sky full of stars.

It’s a rare sight these days for city dwellers.

The lights of civilization have all but eliminated this glimpse into the wonders of the universe.

But light pollution does more than prevent you from stargazing.

The artificial “glow” that fills the city atmosphere also messes with your sleep.

(That’s why it’s so much easier to get up at the crack of dawn when you’re camping)

Specifically, it halts the production of your sleep-inducing hormone: melatonin.

Melatonin is what sets your internal clock, telling your brain when you should be tired vs. when you should be alert.

Our bodies have evolved to perceive light as a trigger to stay awake.

In fact, our bodies have such a low sensitivity threshold for light (0.6 lux), that it doesn’t take much to mess with our melatonin levels.

(Lux is a measurement of light)

The only light that our bodies were built to handle in the evening is moonlight (0.001 lux), which is well below that threshold.

Now, think about all the artificial light that you’re surrounded by every day.

I mean, an extremely potent source is basically attached to your hand in the form of a smartphone.

No wonder men these days never feel rested in the morning…

So, is there any way to be like those guys that can wake up at 5am, roll out of bed, and get after it?

Thankfully, yes.

The most important being avoiding as much bright light as possible 1-2 hours before bed.

That means no smartphone, TV, or tablet…

And even dimming down any overhead lights.

Blue light blocking glasses and blue light eliminating apps like f.lux can help if you absolutely need to be on a device at night.

It also means keeping light pollution away from you, by investing in blackout curtains. Install them in any room that you use in the evening and keep them shut 1-2 hours before bed.

But light pollution is only one of the causes of poor sleep.

Most of our readers are high performing men who push themselves to the limit whether it’s in the boardroom or on the golf course.

A busy schedule combined with stress is a recipe for not getting enough sleep or the quality sleep the body craves.

Everything talked about in this post is why we developed Overnight T+.

This breakthrough formula contains 12 science-backed ingredients that are specifically designed to help men…

Fall asleep faster, stay asleep longer, and get deeper, more refreshing sleep.

Ingredients like magnolia bark.

This plant has been used in Eastern Medicine for thousands of years for high quality sleep and to fight stress and anxiety. Research shows it helps men spend 30% more time in restorative “Slow Wave” sleep.

L- theanine, a compound found in tea that works by helping the brain generate “alpha waves” …The peaceful calm state you experience right before you fall asleep.

A potent GABA promoter to help you relax called passion flower… which studies show can make you sleep 25% longer.

A the correct dose of melatonin to fight back against modern light pollution.

If you ever struggle to fall asleep…stay asleep…or don’t wake up feeling rejuvenated and ready to take on the day…

Overnight T+ is for you.

For all the crucial details on this breakthrough sleep support formula…

Click this link here.

5 1 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x

Mito Male Scientific References

1. Cavallini, G., Caracciolo, S., Vitali, G., Modenini, F., & Biagiotti, G. (2004). Carnitine versus androgen administration in the treatment of sexual dysfunction, depressed mood, and fatigue associated with male aging. Urology, 63(4), 641-646. doi:10.1016/j.urology.2003.11.009

2. Malaguarnera, M., Cammalleri, L., Gargante, M. P., Vacante, M., Colonna, V., & Motta, M. (2007). L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. The American Journal of Clinical Nutrition, 86(6), 1738-1744. doi:10.1093/ajcn/86.5.1738

3. Karlic, H., & Lohninger, A. (2004). Supplementation of l-carnitine in athletes: Does it make sense? Nutrition, 20(7-8), 709-715. doi:10.1016/j.nut.2004.04.003


4. Samimi, M., Jamilian, M., Ebrahimi, F. A., Rahimi, M., Tajbakhsh, B., & Asemi, Z. (2016). Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clinical Endocrinology,84(6), 851-857. doi:10.1111/cen.13003


5. Sahlin, K. (2011). Boosting fat burning with carnitine: An old friend comes out from the shadow. The Journal of Physiology, 589(7), 1509-1510. doi:10.1113/jphysiol.2011.205815


6. Soczynska, J. K., Kennedy, S. H., Chow, C. S., Woldeyohannes, H. O., Konarski, J. Z., & Mcintyre, R. S. (2008). Acetyl-L-carnitine and α-lipoic acid: Possible neurotherapeutic agents for mood disorders? Expert Opinion on Investigational Drugs, 17(6), 827-843. doi:10.1517/13543784.17.6.827


7. Miyagawa, T., Kawamura, H., Obuchi, M., Ikesaki, A., Ozaki, A., Tokunaga, K., . . . Honda, M. (2013). Effects of Oral L-Carnitine Administration in Narcolepsy Patients: A Randomized, Double-Blind, Cross-Over and Placebo-Controlled Trial. PLoS ONE,8(1). doi:10.1371/journal.pone.0053707


8. Cristofano, A., Sapere, N., Marca, G. L., Angiolillo, A., Vitale, M., Corbi, G., . . . Costanzo, A. D. (2016). Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimers Dementia. Plos One, 11(5). doi:10.1371/journal.pone.0155694

. Fillit, H., & Hill, J. (2004). The Economic Benefits of Acetylcholinesterase Inhibitors for Patients with Alzheimer Disease and Associated Dementias. Alzheimer Disease & Associated Disorders,18. doi:10.1097/01.wad.0000127492.65032.d3


10. Miyata, M., Yoshihisa, A., Yamauchi, H., Owada, T., Sato, T., Suzuki, S., . . . Takeishi, Y. (2014). Impact of sleep-disordered breathing on myocardial damage and metabolism in patients with chronic heart failure. Heart and Vessels, 30(3), 318-324. doi:10.1007/s00380-014-0479-6


11. Lango, R. (2001). Influence of ?-carnitine and its derivatives on myocardial metabolism and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovascular Research, 51(1), 21-29. doi:10.1016/s0008-6363(01)00313-3


12. Vescovo, G., Ravara, B., Gobbo, V., Sandri, M., Angelini, A., Barbera, M. D., . . . Libera, L. D. (2002). L-Carnitine: A potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. American Journal of Physiology-Cell Physiology, 283(3). doi:10.1152/ajpcell.00046.2002


13. Shadboorestan, A., Shokrzadeh, M., Ahangar, N., Abdollahi, M., Omidi, M., & Payam, S. S. (2013). The chemoprotective effects of l-carnitine against genotoxicity induced by diazinon in rat blood lymphocyte. Toxicology and Industrial Health,31(12), 1334-1340. doi:10.1177/0748233713491811


14. Chowanadisai, W., Bauerly, K. A., Tchaparian, E., Wong, A., Cortopassi, G. A., & Rucker, R. B. (2009). Pyrroloquinoline Quinone Stimulates Mitochondrial Biogenesis through cAMP Response Element-binding Protein Phosphorylation and Increased PGC-1α Expression. Journal of Biological Chemistry,285(1), 142-152. doi:10.1074/jbc.m109.030130


15. Chowanadisai, W., Bauerly, K. A., Tchaparian, E., Wong, A., Cortopassi, G. A., & Rucker, R. B. (2009). Pyrroloquinoline Quinone Stimulates Mitochondrial Biogenesis through cAMP Response Element-binding Protein Phosphorylation and Increased PGC-1α Expression. Journal of Biological Chemistry, 285(1), 142-152. doi:10.1074/jbc.m109.030130


16. Stites TE, Mitchell AE, Rucker RB. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr. 2000 Apr;130(4):719-27
17. Steinberg, F., Stites, T. E., Anderson, P., Storms, D., Chan, I., Eghbali, S., & Rucker, R. (2003). Pyrroloquinoline Quinone Improves Growth and Reproductive Performance in Mice Fed Chemically Defined Diets. Experimental Biology and Medicine, 228(2), 160-166. doi:10.1177/153537020322800205


18. Biswas, T. K., Pandit, S., Mondal, S., Biswas, S. K., Jana, U., Ghosh, T., . . . Auddy, B. (2010). Clinical evaluation of spermatogenic activity of processed Shilajit in oligospermia. Andrologia,42(1), 48-56. doi:10.1111/j.1439-0272.2009.00956.x


19. Surapaneni, D. K., Adapa, S. R., Preeti, K., Teja, G. R., Veeraragavan, M., & Krishnamurthy, S. (2012). Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic–pituitary–adrenal axis and mitochondrial bioenergetics in rats. Journal of Ethnopharmacology, 143(1), 91-99. doi:10.1016/j.jep.2012.06.002


20. Chang, C. S., Choi, J. B., Kim, H. J., & Park, S. B. (2011). Correlation Between Serum Testosterone Level and Concentrations of Copper and Zinc in Hair Tissue. Biological Trace Element Research,144(1-3), 264-271. doi:10.1007/s12011-011-9085-y


21. Plasma Steroid-Binding Proteins in Tumour Diseases. (1984). Molecular Aspects of Medicine, 371-380. doi:10.1016/b978-0-08-033239-0.50032-6

[]